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Abstract—Despite significant progress in deep learning-based
optical flow methods, accurately estimating large displacements
and repetitive patterns remains a challenge. The limitations
of local features and similarity search patterns used in these
algorithms contribute to this issue. Additionally, some exist-
ing methods suffer from slow runtime and excessive graphic
memory consumption. To address these problems, this paper
proposes a novel approach based on the RAFT framework. The
proposed Attention-based Feature Localization (AFL) approach
incorporates the attention mechanism to handle global feature
extraction and address repetitive patterns. It introduces an
operator for matching pixels with corresponding counterparts
in the second frame and assigning accurate flow values. Fur-
thermore, an Amorphous Lookup Operator (ALO) is proposed
to enhance convergence speed and improve RAFT’s ability to
handle large displacements by reducing data redundancy in its
search operator and expanding the search space for similarity
extraction. The proposed method, Efficient RAFT (Ef-RAFT),
achieves significant improvements of 10% on the Sintel dataset
and 5% on the KITTI dataset over RAFT. Remarkably, these
enhancements are attained with a modest 33% reduction in speed
and a mere 13% increase in memory usage. The code is available
at: https://github.com/n3slami/Ef-RAFT

Index Terms—Optical Flow, Large Displacement, Repetitive
Patterns, Attention Mechanism, Deep Neural Networks

I. INTRODUCTION

Optical Flow is a fundamental challenge in computer vision,
focusing on determining the displacement vector for each
pixel between two consecutive frames. This technique holds
immense significance across downstream tasks, like visual
tracking [1], video segmentation [2], and robot navigation [3].
Traditionally, the problem has been tackled using different
classical computer vision methods such as correlation-based
[4], block matching [5], and energy minimization-based [6]
techniques. However, these approaches have proven to be
computationally expensive, making them impractical for real-
time applications.

In recent years, deep learning has emerged as a promising
alternative to conventional approaches. Deep learning tech-
niques have the advantage of bypassing the need to formulate
optimization problems and instead train networks to directly
predict the optical flow. These methods [7]–[9] have demon-
strated comparable performance to the top traditional methods
while significantly reducing the inference time, making them
faster and more efficient. In general, neural network models
take a pair of consecutive images captured by a frame-based

camera as input and generate predictions for the optical flow
that effectively warps pixels from one image to the other.

RAFT [10], which stands for Recurrent All-Pairs Field
Transforms, is considered one of the most successful learning-
based methods for optical flow estimation. It has gained
significant popularity as a simple yet robust baseline approach
in the field. While this method exhibits efficient performance
when evaluated on benchmark datasets, it can still encounter
challenges under specific conditions. For instance, when deal-
ing with significant displacements or untextured/repetitive pat-
terns, there is a possibility of encountering large errors in the
estimated optical flow. To enhance the performance of optical
flow estimation, advanced techniques have been developed
specifically for enhancing the RAFT method. These techniques
encompass attention-based operations [11], [12], graph models
[13], and latent cost-volume augmentation [14]. However,
it is important to note that these methods typically require
additional computational resources and introduce significant
inference time, which limits their practical application in real-
world scenarios.

To tackle the challenges posed by large displacements and
repetitive patterns in the RAFT method, this paper introduces
two novel mechanisms: 1) the Amorphous Lookup Operator
(ALO), and 2) the Attention-based Feature Localizer (AFL).
The former replaces the original lookup operator of RAFT,
allowing the network to vary the distribution of the correlation
queries based on the input frames, resulting in the ability
to recognize larger displacements. The latter transforms the
resultant features of the feature encoders in such a way that
the network can differentiate and match the pixels in a poorly
textured region, reducing the ambiguities that stem from these
regions and thus, mitigating the resultant errors in estimation.

In summary, the main contributions of this work are as
follows:

• Proposing the Amorphous Lookup Operator (ALO) as a
novel method for tackling large displacement problem of
the optical flow estimation methods.

• Proposing the Attention-based Feature Localizer (AFL)
as a novel method for tackling repetitive patterns problem
of the optical flow estimation methods.

• Validating the effectiveness of the proposed methods
by conducting extensive experiments on the Sintel and
KITTI datasets.
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II. RELATED WORK

Traditionally, optical flow was commonly approached using
energy-based methods [6], [15], [16] that employed a varia-
tional approach by defining a data term and a regularization
term. To address the challenge of large displacements, im-
proved estimation methods such as pyramid approaches [17]
were introduced. Additionally, feature-based methods emerged
as a solution to mitigate the large displacement problem [18]–
[22]. These methods defined a matching term and utilized
dynamic programming and interpolation techniques to enhance
accuracy and robustness.

Significant progress has been made in the field of opti-
cal flow estimation, thanks to recent advancements in deep
learning. FlowNet [7] introduced the first end-to-end network
capable of tackling this task. Subsequently, a series of meth-
ods based on neural networks [8], [9], [23]–[29] have been
developed, aiming to enhance performance through coarse-to-
fine or iterative approaches. These methods have contributed
to a notable improvement in optical flow estimation. Typically,
these methods employ a correlation matrix to capture the sim-
ilarities between pixels in consecutive frames. This correlation
matrix takes the form of a 4D volume, which can be quite large
depending on the size of the frames being processed. Due to
the limited receptive field of Convolutional Neural Networks
(CNNs), transformer-based approaches have recently emerged
[14], [30], [31] as a solution. These transformer architectures
have shown superior performance compared to CNNs. How-
ever, it is worth noting that transformer-based approaches often
require a substantial amount of data and annotations to achieve
their optimal performance.

RAFT [10], drawing inspiration from variational methods,
incorporates recurrent gate units and correlation matrices at
multiple scales. It stimulates an iterative optimization problem
that improves the flow estimations through iterative refine-
ment. Following the utilization of large correlation matrices
in RAFT, numerous efforts have been made to enhance the
performance of RAFT in various aspects [11]–[13], [32], [33].
Many of the mentioned works focus on leveraging the attention
mechanism to improve RAFT. In particular, [32] introduces an
attention-based approach to estimate the similarity between
pairs of pixels. By incorporating vertical and horizontal cor-
relations, it enhances the estimation process. Notably, [14]
replaces correlation matrices with correlation memory, which
consists of tokens describing pixels. Correlation values are
computed using attention within this memory structure. Ad-
ditionally, [33] employs the attention mechanism to address
the impact of noise on correlation matrices, resulting in the
extraction of more globally coherent and semantically stable
features. Occlusion poses a significant challenge in optical
flow estimation, and [11] addresses this issue by employing
attention to generalize information to occluded areas. By
utilizing attention, it aims to provide a more comprehensive
understanding of the scene, even in the presence of occlusions.
Repetitive patterns, on the other hand, introduce difficulties in
determining corresponding pixels due to their similar feature

vectors. [12] utilizes attention to identify pixels that are highly
likely to be correct correspondences, which proves beneficial
in handling scenarios with large displacements. By leveraging
attention, it enhances the ability to cope with repetitive patterns
and improve the accuracy of optical flow estimation.

In this paper, building upon the RAFT framework, two novel
methods are introduced to specifically tackle the challenges
posed by large displacements and repetitive patterns. These
methods, referred to as Attention-based Feature Localizer and
Amorphous Lookup Operator significantly enhance the perfor-
mance of RAFT. Notably, these proposed techniques achieve
notable improvements while imposing a minimal burden on
memory consumption and runtime.

III. PROPOSED METHOD

In this section, first the optical flow baseline, RAFT [10],
is reviewed as this work is based on the RAFT architecture.
Subsequently, a detailed explanation of the two proposed
methods for addressing large displacements and repetitive
patterns are provided.

A. Optical Flow Estimation Baseline

Given a pair of consecutive frames, I1 and I2, a dense
displacement field (a1, a2) is estimated. This field maps each
pixel (u, v) in I1 to its corresponding coordinates (u′, v′) =
(u+a1(u), v+a2(v)) in I2. As illustrated in Fig1, the RAFT
model consists of some main components, each of which is
briefly explained below. For more information about the RAFT
baseline, refer to [10].

1) Encoders: Two encoders with residual blocks are used
in RAFT to extract features and reduce noise. As depicted in
Fig 1, the feature encoder, gθ, is employed to extract features
from both frames. On the other hand, the context encoder,
hθ, is applied to I1 to extract features for optimization and
estimate the flow.

2) Correlation Volume: This volume aims to represent the
similarities between the points in the pair of frames. Let’s
suppose that F1 = gθ(I1) and F2 = gθ(I2) are the extracted
features from the feature encoder for I1 and I2, respectively.
The correlation volume, C, can be calculated as follows [10]:

Cl
i,j,x,y =

{
⟨F1(i, j), F2(x, y)⟩ l = 0

AveragePoolingx,y(C
l−1
i,j,x,y) l ≥ 1.

(1)

Where Cl denotes the correlation at the l-th level. In fact,
the first level (l = 0) is created by calculating the dot product
of each pair of points in F1 and F2. The next three levels
are formed by applying average pooling on the last two
dimensions of the correlation volume in the former layer.

3) Lookup Operator: Given a current estimate of optical
flow (a1, a2), each pixel p = (u, v) in I1 is mapped to its
estimated correspondence in I2: q = (u + a1(u), v + a2(v)).
Following that, a local grid is defined around q:

N (q)r = {q + h|h ∈ Z2, ||h||1 ≤ r} (2)



Fig. 1: Diagram of RAFT [10] encompasses three main components. 1) Feature encoders are employed to extract per-pixel
features from the input frames. 2) A correlation layer constructs a correlation volume with dimensions W × H × W × H
by computing the inner product of feature vectors for all pairs. 3) An update operator recurrently enhances the optical flow
estimation by leveraging the current estimate to retrieve values from the set of correlation volumes.

where r is the radius of the grid. This operator extracts
similarity values from the correlation volume as a vector for
a pair of points, p and q.

4) Recurrent Gate Units: This component simulates the
optimization algorithm, which estimates a sequence of flow
estimates {a1, a2, ..., aN} starting from an initial flow a0 = 0.
It takes the current flow, correlations, and a hidden state as
input, and iteratively updates the flow and hidden state in
output.

Finally, the loss function of the network is defined as
follows:

ℓ =

N∑
i=1

γN−i||agt − ai||1 (3)

Where agt represents the ground truth flows, ai denotes the
calculated flows in the i-th step of the algorithm and γ is a
hyperparameter.

B. Amorphous Lookup Operator

RAFT’s vanilla lookup operator has three major short-
comings: 1) It’s structure imposes a hard limit of 256 pixels
on the distance that the network can gather information from
in each iteration. 2) In practice it often fails to find meaningful
correspondences up to this range. 3) Since the lookup operator
is used on all levels of the correlation volume, the data
extracted is pooled from the same regions, causing unneeded
redundancy. The idea of the Amorphous Lookup Operator
(ALO) is to allow the network to change the lookup operator
so that, based on the input frames, it can choose to query
farther away similarities and reduce the redundancy of the
extracted similarities.

The ALO changes the original grids of the lookup operator
by scaling and translating parts of it. That is, it first calculates
four scalar parameters sx, sy ∈ [1, 3], dx, dy ∈ [0, 2] based on
the input frames. It then transforms each point pold = (i, j)
in the old lookup operator to

pnew = (sxi+ sign(i)dx, syj + sign(j)dy), (4)

+dx−dx

+
d
y
−
d
y

Fig. 2: Structure of the grid used in the original lookup
operator (left), compared to the transformed lookup operator
used in the ALO (right).

where sign(·) is a function returning +1 for positive inputs,
−1 for negative inputs, and 0 for an input of zero. This
transformation breaks the grids into four sub-grids, which
can be positioned and spaced arbitrarily, while maintaining
symmetry, as shown in Fig. 2. The parameters sx, sy , dx and
dy are calculated separately for each level of the correlation
volume, which enable the network to adaptively pool similarity
data from farther regions, while avoiding the extraction of too
much redundant information.

The aforementioned scalars are calculated via the applica-
tion of a light-weight network module similar in structure to
the BAM [34] and CBAM [35] architectures. The structure
of this module is depicted in Fig. 3. The network first
concatenates the current hidden state with the context features,
and enriches them with a 1×1 convolution. Then, it generates
a global and compact descriptor of the algorithm’s state by
doing a Max and a Min pooling operation, and concatenating
the resultant vectors. It then feeds this descriptor into two
single layer, fully connected networks, each with a Sigmoid
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Fig. 4: Definition of the x±
p and y±p values for a pixel p in

a poorly textured region. The orange points depict the pixels
that may cause us to err in our estimation of ∆xp and ∆yp.

activation function. These networks then apply an appropriate
affine transform on the result of the Sigmoid function, out-
putting the scalar for all levels of the correlation volume. The
final scalars are then fed into the ALO, and also concatenated
with the context features of the network. Concatenation with
the context feature map is crucial, as the GRU will not know
what type of ALO is being used otherwise, and cannot reap
the benefits of having this new lookup operator.

Therefore, the light weight of this structure allows the
network to calculate the scalar parameters in a memory and
compute efficient manner, adapting the lookup operator based
on the input image and the current stage of the regression
algorithm.

C. Attention-based Feature Localizer

The vanilla RAFT architecture uses the outputs of the
feature encoders to calculate the correlation volumes. Due
to the convolutional structure of these encoders, the output
features are inherently local, which may cause the network as
whole not being able to differentiate between points in poorly
textured regions of the frames. Consequently, the regression
algorithm will have a hard time estimating a correct flow value
for these regions of the frames, as it has to utilize the flow
values outside of the regions to slowly correct the prediction
of the region itself.

To remedy this, the aforementioned features are augmented
with a set of “global features” that encapsulate some data from
across the entire frames, enabling the network to differentiate
the poorly textures pixels by looking at these global features.
To achieve this, for each pixel p of each frame, the following
four parameters are defined: x+

p , x−
p , y+p , and y−p , which

represent how many pixels must we move from p to the right
(resp. left, up, and down) to exit the poorly textured region.
An example of these values is depicted in Fig. 4.

The idea then is to not estimate the values x±
p and y±p

themselves, but rather estimate ∆xp = x+
p − x−

p and ∆yp =
y+p − y−p , which essentially represent the whereabouts of the
point p when compared to the “middle-points” of the poorly
textured region. Therefore, ∆xp and ∆yp create something
similar to a coordinate system for each poorly textured shape.
One can expect the values of ∆xp and ∆yp to not change by
much for corresponding points, when poorly textured regions
are translated only.

Suppose the values ∆xp are calculated for the pixels in
row r of the first frame. To this end, the multi-head attention
mechanism is applied on the features resulting from the feature
encoders of this frame, which we shall denote fr,i for the i-
th pixel of this row. Then, the keys and values for a query
qi = fr,i are defined as

kj = fr,j , vj = pe(i− j), (5)

where pe(·) is the positional encoding function defined in [36]
as pe(·)2k = sin( ·

1000k/d ), pe(·)2k+1 = cos( ·
1000k/d ).

Since the keys ki and queries qi are defined in the same
manner, in the context of a poorly textured region, this mech-
anism will take a weighted average of the relative positional
encodings of the row, with the pixels in the region having a
much larger weight that the pixels outside. This will result in
an estimate of ∆xp in the form of a positional encoding, which
gives the network some idea as to what the actual value of ∆xp

is. The implementation uses four heads during this calculation,
so that it can take into account more complex similarities
between the feature vectors in the pooling procedure.

Notice that vj is a “relative positional encoding” dependent
on both i and j. To calculate this relative positional encoding,
first the multi-head attention mechanism is applied using v′j =
pe(j), which is the standard positional encoding, and then
exploit the linearity of the attention mechanism along with
well-known trigonometric identities to convert the input j into
i − j. It is worth noting that the resulting estimation is not
without error. For instance, in Fig. 4, the points colored in
orange will bias the estimate of ∆xp towards the left.

This same procedure can be applied on all rows and columns
of both frames to derive estimates for all values ∆xp and ∆yp,
all using the same module. The resulting estimates are then
concatenated with the features of their corresponding frames,
effectively augmenting the old features with a set of global
features that span the entire row and column of each pixel.
This resulting estimate lends itself well to how the correlation
volume is calculated, as closer values of the input to pe(·)
correspond to a larger dot-product, and thus more similarity.



It is worth noting that this mechanism is applied only on
the rows and columns, enabling it to enjoy excellent speed and
memory efficiency.

IV. EXPERIMENTS

A. Datasets and Training Schedule

Based on prior works, the model is initially pretrained on the
FlyingChairs dataset [7] for 100k iterations using a batch size
of 10. Following that, it undergoes an additional pretraining
phase on the FlyingThings dataset [37] for 200k iterations with
a batch size of 6. In this work, no fine-tuning is performed. The
evaluation is conducted on both the train split of the KITTI-15
[38] dataset and the train split of the MPI Sintel [39] dataset,
considering both the Clean and Final passes of the data.

For the ablation results, fast configuration was employed
for training and evaluation purposes. In this configuration, the
model underwent training for 25k steps using the train set of
the MPI Sintel dataset. Following the training phase, the model
was evaluated on the train set of the KITTI-15 dataset.

The implementations of all the networks were done using
the PyTorch framework. Training and inference processes
were conducted on a single NVIDIA GeForce RTX 3090
GPU. The training process involves the utilization of the
AdamW optimizer with a one-cycle learning rate scheduler.
Additionally, the gradients are clipped to the range of [-1, 1].
The hyperparameter γ in the equation 3 is set to 0.8, similar
to the approach used in [10].

B. Evaluation Metrics

The main evaluation metric for the MPI Sintel dataset is
the end-point error (EPE), which represents the average error
of the flow estimation at each pixel, measured in terms of the
number of pixels. For the KITTI-15 dataset, the evaluation
metrics used are F1-EPE and F1-All. F1-EPE is the same as
the EPE metric described for the Sintel dataset. On the other
hand, F1-All measures the percentage of outliers, specifically
pixels whose end-point error exceeds either 3 pixels or 5%
of the ground truth flow magnitude. This metric is averaged
over all pixels in the dataset. To validate the efficiency of the
proposed method, additional metrics such as the number of
parameters in the network, runtime, and memory usage are
reported.

C. Experimental Results

Extensive experiments were conducted to validate the effec-
tiveness of the proposed method by comparing it with several
existing methods, including RAFT used as the baseline. The
results of the proposed method in comparison to these existing
methods are presented in Table I. The table demonstrates
that the proposed method achieves great results in terms of
EPE on the challenging Sintel dataset, particularly on the
Final pass. Moreover, on the KITTI dataset and the F1-All
evaluation metric, the proposed method achieves the third-
best performance. It is worth noting that GMFlowNet, being a
transformer-based method, requires a larger amount of training
data and has a higher number of parameters compared to our

method. In light of this, the proposed method still achieves
remarkable results overall. Specifically, compared to RAFT,
it demonstrates more than a 10% improvement on the Sintel
dataset and nearly a 6% improvement on the KITTI dataset,
which means the proposed method plays a significant role in
improving large errors.

Additionally, it is important to mention that CRAFT and
GMA are two methods that exhibit results comparable to the
proposed method. These methods have pursued independent
approaches in their research and can even be combined with
the proposed method to further enhance performance.

Table II presents a runtime comparison between the pro-
posed method and RAFT, considering two different numbers of
steps. The table illustrates that the proposed method improves
upon RAFT while introducing only a 33% runtime overhead.
This indicates a balanced trade-off between accuracy and
efficiency, as the proposed method achieves better results while
maintaining reasonable runtime performance.

Table III provides a comparison of RAFT, the proposed
method, and GMFlowNet in terms of the number of param-
eters and memory usage. As mentioned earlier, the proposed
method utilizes significantly less GPU memory compared to
GMFlowNet, making it feasible to run on the 24GB RAM
of the Nvidia GeForce 3090 GPU. Additionally, the table
reveals that the proposed method introduces only a slight
increase in the number of parameters and memory usage
(13%) compared to RAFT, despite its significant improvement
in flow estimation accuracy. This highlights the efficiency
of the proposed method in achieving impressive results with
relatively fewer parameters and memory requirements.

TABLE I: Comparison of the proposed method with existing
techniques on the Sintel and KITTI datasets. Green, blue, and
red colors denote the first, second, and third-best results.

Method MPI Sintel (Train) KITTI-15 (Train)
EPE (Clean) EPE (Final) F1-EPE F1-All

PWC-Net [9] 2.55 3.93 10.35 33.7
LiteFlowNet [24] 2.48 4.04 10.39 28.5
LiteFlowNet2 [40] 2.24 3.78 8.97 25.9

VCN [27] 2.21 3.68 8.36 25.1
MaskFlowNet [25] 2.25 3.61 - 23.1

FlowNet2 [23] 2.02 3.54 10.08 30.0
DICL [41] 1.94 3.77 8.70 23.60

Flow1D [32] 1.98 3.27 5.59 22.95
RAFT [10] 1.43 2.71 5.02 17.46

FM-RAFT [42] 1.29 2.95 6.98 19.3
CRAFT [33] 1.27 2.79 4.88 17.50
GMA [11] 1.30 2.74 4.69 17.10

AGFlow [13] 1.31 2.69 4.82 17.0
KPA-Flow [43] 1.28 2.68 4.46 15.90

S-Flow [29] 1.30 2.59 4.60 15.90
GMFlowNet [12] 1.14 2.71 4.24 15.40

EMD-S [28] 1.31 2.67 5.0 17.0
Ef-RAFT (ours) 1.27 2.60 4.83 16.45

D. Ablation

The effectiveness of the proposed components was further
validated through an ablation study. Quick training was con-
ducted, where the lower steps method was trained on the Sintel
dataset and evaluated on the KITTI dataset. The results in



Fig. 5: Qualitative comparison between the proposed method and RAFT. Frames with orange and blue labels are from Sintel
and KITTI datasets, respectively.

TABLE II: Runtime comparison between the proposed method
and RAFT.

Method #Steps Runtime (s) EPE (Clean) EPE (Final)
RAFT 32 87.81 1.46 2.69

Proposed 32 117.64 1.29 2.62
RAFT 22 60.39 1.48 2.69

Proposed 22 85.91 1.28 2.60

TABLE III: Number of parameters and memory usage com-
parison.

Method #Steps #Parameters Memmory Used
RAFT 12 5.3 M 11988 (MiB)

GMFlowNet 12 9.3 M ≥ 24000 (MiB)
RAFT 12 5.7 M 13520 (MiB)

Table IV show that both ALO and AFL components contribute
to the improvement over RAFT. While the AFL alone achieves
better results on the KITTI dataset, the combined inclusion of
both components is believed to offer greater learning ability.
Overall, the study demonstrates that the synergistic effect of
incorporating both components leads to enhanced performance
compared to individual components.

TABLE IV: Ablation for Ef-RAFT to validate the effectiveness
of proposed ALO and AFL components.

Method MPI Sintel (Train) KITTI-15 (Train)
EPE (Clean) EPE (Final) F1-EPE F1-All

RAFT [10] 1.73 2.40 8.14 22.60
w/o AFL 1.57 2.19 6.40 18.81
w/o ALO 1.81 2.41 3.15 11.36
Proposed 1.57 2.13 6.02 18.75

E. Qualitative Assessment

Qualitative assessment was conducted to further validate the
proposed method. Figure 5 demonstrates that the proposed
method is capable of estimating flows that are significantly
better than RAFT. The visual comparison clearly showcases
the improved accuracy and quality of the flow estimations
achieved by the proposed method.

V. CONCLUSION AND FUTURE WORK

In this paper, Ef-RAFT was presented, a re-imagining of
the renowned RAFT network. The novel ideas of Amorphous
Lookup Operator and Attention-based Feature Localizer were
explored, which enabled Ef-RAFT to improve upon its pre-
decessor while also keeping the computational complexity
and memory footprint low. Then experiments were conducted
to showcase the improved accuracy and efficiency of Ef-
RAFT, as well as demonstrating the necessity of the structures
used ith an ablation study. It is believed that Ef-RAFT can
be extended in several directions: 1) The Attention-Based
Feature Localizer is not robust to rotations in the poorly
textured regions. Applying the same mechanism on rotated
lines in the images, instead of the rows and columns alone,
may be a promising first step forward. 2) Ef-RAFT’s ideas
are orthogonal to what is used in many other papers, e.g.
CRAFT and GMA. Combining these methods in an efficient
and practical manner may also open doors to better accuracies
with a light-weight network.
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