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Abstract—Recently, Convolutional Neural Networks have made
significant progress in segmentation. When it comes to semantic
segmentation, accuracy and efficiency are equally as crucial.
Although these deep networks have achieved high accuracy, they
suffer from low inference speed, which makes them impractical
for use in real-time settings. In this paper, a simple yet efficient
knowledge distillation approach is investigated as a means of
transferring knowledge from the feature maps of the cumbersome
model (teacher) to guide the compact model (student) learning.
This is in contrast to some existing computationally expensive
methods in training time. In order to address this issue, we
resort to the straightforward approach known as pixel-wise
distillation to distill the feature maps of the last Convolution
layer of the teacher model to the student model. Furthermore,
pair-wise distillation is utilized to distill pair-wise similarities
of the intermediate layers. To validate the effectiveness of the
proposed method, extensive experiments have been conducted on
the PascalVoc 2012 dataset using a state-of-the-art DeepLabV3+
segmentation network with different backbone architectures.
Experiments show that the proposed method has balanced mIoU
and training time well.

Index Terms—Convolutional Neural Networks, Semantic Seg-
mentation, Knowledge Distillation

I. INTRODUCTION

A pixel-wise classification problem is referred to as seman-
tic segmentation. This task aims to assign a specified class (or
label) to each pixel in an image. It is a fundamental topic in the
field of computer vision, and it can be applied to a wide variety
of applications in the real world, including virtual reality,
autonomous driving, and video surveillance. Various semantic
segmentation approaches have recently emerged based on deep
neural networks that have shown superior performance. The
succeeding methods, such as DeepLab [1] and PSPNet [2],
have achieved a considerable improvement in the accuracy
of segmentation, albeit they frequently include cumbersome
models and costly computation.

Some real-time architectures for semantic segmentation
have been proposed to tackle this problem, e.g., ENet [3],
ESPNet [4], ICNet [5] and BiSeNet [6] [7]. On the other hand,
several strategies have been proposed to reduce the model’s
size and improve its cost-effectiveness, including model prun-
ing, model quantization, and knowledge distillation. Among
these, knowledge distillation is currently being researched in
depth. Knowledge distillation refers to the method that helps

the training process of a smaller network (student) under the
supervision of a more extensive network (teacher) which was
first proposed in [8]. Unlike other compression methods, it
can reduce the size of a network without consideration of the
structural differences that exist between a teacher network and
a student network.

For the purpose of training compact semantic segmentation
networks, the knowledge distillation technique is investigated,
which has already been tested and shown to be effective in
classification tasks [8] [9]. Like most existing methods, in
this work, the semantic segmentation problem is approached
by viewing it as a collection of distinct pixel classification
problems. Then the knowledge distillation is applied to the
pixel level. Different from the classification task, semantic
segmentation has a structured output. Long-range dependen-
cies are significant for semantic segmentation, and the teacher
and student models typically capture different long-range
contextual information due to the differences in the receptive
fields.

In this work, we also present structured knowledge dis-
tillation and transfer the structure information with pair-
wise distillation using intermediate feature maps, which are
proven to contain rich information [10] [11]. This pair-wise
distillation, along with the pixel-wise distillation, provides rich
information for the student network from the teacher network.
To this end, an objective function that combines a conventional
cross-entropy loss with the distillation losses is optimized.

In summary, the main contributions of this work are as
follows:

• Investigating a knowledge distillation strategy for training
accurate compact semantic segmentation networks.

• Defining pixel-wise and pair-wise distillation approaches
to transfer spatial information and long-range dependen-
cies from teacher to student network.

• Validating the effectiveness of the method on the Pascal
VOC 2012 [12] dataset with a state-of-the-art segmenta-
tion network; namely, DeepLabV3+ [13] with different
backbones.

II. RELATED WORK

In the following, we review works of literature that are
relevant to this work, including state-of-the-art researches on



semantic segmentation and knowledge distillation.
Semantic Segmentation: Semantic segmentation is known as
a challenging task, which is about to combine global infor-
mation with detailed local information to predict the structure
of an input image in terms of classifying pixels to categories.
Semantic segmentation networks are generally larger than clas-
sification ones, as they have to extract additional information
beside the information needed for classification. The fully con-
volutional framework, first introduced in [14], added several
important improvements to segmentation network design. It
can use pretrained weights of classification networks, perform
on variable input size, and be trained end-to-end. DeepLabV3+
[13] and PSPNet [2] are two of the most powerful and
popular existing segmentation networks. Due to their flexible
design, one can choose big and powerful or small and efficient
classifier networks as their backbones. They use Atrous con-
volution and pyramid spatial pooling to capture global context
while preserving feature maps’ resolution and details. In this
work, DeepLab with ResNet101 [15] backbone is adopted
as the teacher and DeepLab with ResNet18 and MobileNet
backbones are chosen as the student networks.

In addition to cumbersome networks for highly accurate
segmentation, real-time segmentation networks have been at-
tracting increasingly more interest due to the need for real
applications, such as mobile applications. This is because
highly efficient segmentation networks can segment data in
a fraction of the time as cumbersome networks. Most works
concentrate on creating lightweight networks by speeding up
the convolution operations using factorization methods. ENet
[6], inspired by [1], incorporates multiple acceleration factors,
such as multi-branch modules, early feature map resolution
down-sampling, minimal decoder size, filter tensor factor-
ization, etc. ESPNet [4] replaced conventional convolution
layers with a spatial pyramid of dilated convolutions. ICNet
[5] utilized cascading multi-resolution branches to increase
efficiency. BiSeNet [6] uses two branches, one for learning
spatial information and the other for obtaining a large receptive
field: spatial and context paths.

Knowledge Distillation: The idea of knowledge distillation
first appeared in [8], where the student network uses the
teacher’s predictions as soft labels (compared to zero and one
hard label of ground-truth). Soft labels hold useful information
about the structure of a problem and relationships between
the categories and provide useful information for training the
student. The teacher and student framework is widely used for
helping to train compact students. There are also numerous
other scenarios where it comes useful. For instance, here is a
list of some of the recent related works:

• [16] trains a sequence of identical networks in such a
way that each network distills from the previously trained
one and this leads to improved performance.

• [17] Makes use of a method of channel-wise distillation
that enables students to mimic the correct outputs of the
teacher.

• [18] Utilizes a review mechanism to use past feature
maps as a guide for the current feature map’s distillation.

• [19] Employs auxiliary models to hold pruned intermedi-
ate layers of teacher and student, then distills them using
the curriculum learning approach.

• [20] proposes a relation-based knowledge distillation
framework for transformers.

Most of the discussed methods are designed for image
classification, but [21] applied its method for object detection
as well. Other examples of successful work on object detection
and classification include [22] [23] [24] [25] [26] [27]. After
classification and detection, one of the first applications of
distillation to semantic segmentation was introduced in [28].
They used the prediction of the teacher instead of the ground-
truth for training the student. It led to better results because
the teacher’s output is an easier distribution to learn. Due
to the structural nature of semantic segmentation, additional
distillation methods are applied in addition to pixel-wise
knowledge distillation to transfer more structural information
from teacher to student. Similar to [17], [29] attempts to
take advantage of channel-wise distillation while employing
a divide-and-conquer strategy because channel-wise distilla-
tion is time-consuming. [30] and [31] try to transfer class-
wise similarity by creating class prototypes and category-wise
similarity by constructing the correlation matrix, respectively.
[32] introduced the consistency loss between the student and
the teacher to make their segmentation boundary similar.
It also takes the L2 norm of the difference between the
student’s output probabilities and the teacher’s as another loss.
Authors of [33] employed channel and spatial correlation loss
function in addition to adaptive cross-entropy loss, which
adaptively uses ground-truth labels and teacher predictions.
[34] investigated the design aspects of the feature distillation
method by reviewing the position of feature maps to distill and
distillation losses. They proposed a new distance function to
distill meaningful information between the teacher and student
using marginal ReLU. [35] introduced two novel distillation
losses in segmentation. Pairwise loss is defined as the mean
square distance between elements of affinity matrices of the
teacher and student networks (affinity matrix contains inner
products between every pair of features which encode pixels).
The second loss is called holistic distillation, which uses
adversarial learning to make feature maps of student similar
to its teacher’s, using a discriminator convolutional network.
[36] is another relevant work that was developed parallel with
[35]. It uses an affinity loss which is almost the same as the
pairwise loss in [35], except that they train an auto-encoder
for the last convolutional layer of their teacher network before
computing its affinity matrix. They also use the direct L2 norm
distance between the student’s last convolutional features and
the teacher’s encoded features as an additional loss.

In this paper, we use the idea of pre-activation pixel-wise
distillation introduced in [34] to distill the knowledge of the
last convolution layer of the teacher to the student. Also,
for transferring long-range information, a pair-wise distillation
method is utilized, similar to [35] on the intermediate layers
of teacher and student.



Fig. 1. Our proposed framework for knowledge distillation. The architecture of both the teacher and student networks is Deeplab-V3 + [13], although their
encoders are different. Student network encoder depth is shallower than that of teacher network encoder depth. Teacher network is fixed the during the training
process; only the student network will be trained with two distillation losses and cross-entropy loss. The pixel-wise distillation module uses the preReLU
feature map of the last convolution layer of the decoder before probability scores to transfer detailed spatial information. The pair-wise distillation module
uses the feature map of the last layer of the encoder to create a pair-wise similarity matrix and transfer global information.

III. PROPOSED METHOD

In this section, the proposed distillation method between
two segmentation CNNs is explained. As it is mentioned in
the previous sections, [9] introduced a method to distill the
knowledge between two feature maps using a distance which
is applied directly to all of their elements. [37] showed that
using an attention map which is created by taking summation
of feature map channels in a specific layer with uniform
weights can improve the performance boost with respect to
the method of [8]. The method of [37] is called Global
Attention Map(GAM) distillation in this paper, because each
feature map is mapped to a single attention matrix. In this
section, the idea of transferring attention maps is investigated
further by distilling pre-activation attention maps using the
idea of [34], and adding pair-wise loss similar to [35]. This
will provides the student network with rich knowledge from
the teacher network to mimic. The high-level architecture
of using the proposed method and standard cross-entropy
loss for semantic segmentation is depicted in Fig. 1. In the
remainder of this section, first, a mathematical notation is
presented, and then the proposed method to create feature
maps and affinity matrixes and a loss function to distill them
between student and teacher networks is formally introduced.
Suppose A ∈ Rc×w×h is an intermediate feature map from
a segmentation network with spatial dimensions h × w and
number of channels c. The notation Ak(x) is used to show
the element at depth k and spatial dimensions are indexed by
the vector x, and different feature maps are indexed as Ai.
The element-wise power operator on matrix A is denoted by
|A|p. The GAM attention matrix for the feature map at layer

i is defined as [37]

Gi =
∑
k

|Ak
i |p (1)

where p = 2 in this paper’s experiments. If the Gi computed
from the teacher network is denoted by Gt

i, and Gi computed
from the student network by Gs

i , then the GAT distillation loss
function can be written as [37]

ℓGATi
=∥ Gt

i

∥ Gt
i ∥2

− Gs
i

∥ Gs
i ∥2

∥2 (2)

which is then used in combination with segmentation loss
with a weighted sum

ℓtotal = ℓseg +
∑
i

λiℓGATi . (3)

Here, the segmentation loss ℓseg is the widely used cross
entropy function between the student network’s normalized
predictions and ground-truth labels. The loss in (2) was origi-
nally defined for image classification, but it can be readily used
in semantic segmentation, as well. The distillation point in [9]
is the end of an arbitrarily chosen intermediate layer, which has
been demonstrated to have poor performance. ReLU allows
the beneficial information (positive) to pass through and filters
out the adverse information (negative). Therefore, knowledge
distillation must be designed under the acknowledgment of
this information dissolution. Similar to [34], the pre-activation
position to distill knowledge is used because positive and
negative values are preserved in the pre-ReLU position without
deformation. A proper distance function is needed based on



the distillation point in the pre-ReLU position. In the teacher’s
feature, the positive responses are utilized for the network,
which necessitates that the positive responses be transferred
with their exact values. If the student response is higher
than the target value, it should be decreased for a negative
teacher response. However, it does not need to be increased
if the student response is lower than the target value since
negatives are blocked by ReLU regardless of their values.
For an arbitrary feature map of the teacher and student,
T, S ∈ Rc×w×h, let the i-th component of the tensor be
Ti, Si ∈ R. Partial L2 distance is defined as [34]

dp(T, S) =

c×w×h∑
i

{
0 ifSi ≤ Ti ≤ 0

(Ti − Si)
2

otherwise.
(4)

Then our pixel-wise loss between teacher and student is
defined

ℓpi = dp(L
t, Ls). (5)

Where Lt and Ls are GAM matrixes of the last convolution
layer of the teacher and student, respectively. These matrixes
are created based on equation (1) with p = 1, to preserve
negative values. Although GAM matrix neglects the informa-
tion in the channels of the feature maps, simply summing over
channels will reduce the training time of the method while still
allowing the transfer of useful information. In addition to the
pixel-wise loss, We make use of a loss that is pair-wise and
analogous to [35]. Let F be a global feature produced by max
pooling an intermediate feature map with proper stride size to
create 3∗3 features. These features are then flattened to create
a feature vector of size 9 for each channel of the feature map
as

fi = Flatten(MaxPool(M i)). (6)

Where M ∈ Rc×w×h is an intermediate feature map from
last convolution layer of the encoder and fi ∈ R9; 1 ≤ i ≤ c is
a new global feature created from M . Then similarity between
the ith and jth pixel is calculated to create a similarity matrix,
E ∈ R9×9, as

ei,j =
fT
i fj

∥ fi ∥2∥ fj ∥2
. (7)

Finally, the squared difference is the basis for formulating
the pair-wise similarity distillation loss in [35] as

ℓpa(E
t, Es) =

1

(w × h)2

w∑
i

h∑
j

(etij − esij)
2. (8)

Where Et and Es are the similarity matrix of teacher and
student, respectively. The overall loss function of our method
then is a weighted sum of ℓseg , ℓpi, and ℓpa, defined by

ℓtotal = ℓseg + αℓpi + βℓpa. (9)

Note that any possible difference of spatial dimensions
between attention maps of teacher and student networks is
compensated by a simple operation of bilinear upsampling.
As experiments of this research show, pixel-wise distillation
achieves better results on the last layers, whereas pair-wise
distillation can perform better on the intermediate layers.

IV. EXPERIMENTAL RESULTS

The standard Pascal Voc 2012 dataset is used to validate
the proposed method. It contains 1,464 labeled images for
training, 1,449 for validation, and 1,456 for test. This dataset is
widely used for the semantic segmentation task and measuring
the mean Intersection over Union (mIoU) metric over the
validation set is usually adopted for reporting the results. There
are 21 classes present in this dataset, including background
class, which must be included in computing the mIoU. The
teacher networks is the Deeplab-V3+ with ResNet101 back-
bone which has 59,344,309 trainable parameters and the stu-
dent networks are the Deeplab-V3+ with ResNet18 backbone
with 16,608,181 and MobileNet-V2 with 5,816,053 trainable
parameters. All of the weights defined as in loss functions
(3), and (9) has been fine-tuned by trying values 100, 10, 1,
and 0.1 and choosing the best one. Based on this, the best
choice for λ, β, and α were 1, 1, and 10, respectively. All of
the models are trained with a similar configuration of batch
size of 6, total epochs of 120, and a starting learning rate of
0.007. Each training image is preprocessed by the operations
of random scaling to 0.5 to 2 times of their original size,
horizontal random flip, and finally a random crop of 513×513
and for validation, also, each image is resized to 513×513
pixels. In the experiments of this work, no augmentation is
added to the standard Pascal Voc dataset (as some of other
papers). The teacher and student networks use the ImageNet
pretrained weights in their backbones and their segmentation
parts are randomly initialized. The experiments in this section
are performed on two different layers, and in the names of the
methods the middle layer refers to the last layer of the decoder,
and the end layer refers to the last convolutional layer of a
segmentation network. In table I, comprehensive comparisons
have been presented to validate the effectiveness of each
distillation method. Results for two different backbones with
different sizes show that the proposed method is architecture-
independent and can be applied to each encoder/decoder-based
segmentation network. On the other hand, one can see that
each distillation module leads to a higher mIoU score. This
implies that our two distillation modules contribute to better
training of the student network. Table II shows the results of
different approaches explained in the last sections. From Table
II, can be seen that distillation can improve the performance
of the student network, and the proposed distillation method
performs better than methods of [37] and [34] without adding
too much computational burden compared to the methods
that try to generate more precise feature maps by exploiting
channel information. In Fig.2 some examples of the output
of the teacher, student, and student with distillation are used
to show the effect of the proposed distillation method. As



TABLE I
EFFECTIVENESS OF THE PROPOSED DISTILLATION METHOD ON TWO STUDENT NETWORKS: MOBILENETV2 AND RESNET-18

WITH/WITHOUT PIXEL-WISE AND PAIR-WISE DISTILLATION MODULES. RESULTS ARE AVERAGE OF 3 RUNS ON THE PASCALVOC
2012 VALIDATION SET.

Method Pixel-wise Pair-wise mIoU(%) Params(M)

Teacher: Deeplab-V3 + (ResNet-101) 74.78 59.3

Student: Deeplab-V3 + (ResNet-18) n/a n/a 66.59 16.6
Student: Deeplab-V3 + (ResNet-18) ✓ ✗ 69.04 16.6
Student: Deeplab-V3 + (ResNet-18) ✗ ✓ 68.47 16.6
Student: Deeplab-V3 + (ResNet-18) ✓ ✓ 69.21 16.6

Student: Deeplab-V3 + (MobileNet-V2) n/a n/a 62.92 5.8
Student: Deeplab-V3 + (MobileNet-V2) ✓ ✗ 64.48 5.8
Student: Deeplab-V3 + (MobileNet-V2) ✗ ✓ 63.56 5.8
Student: Deeplab-V3 + (MobileNet-V2) ✓ ✓ 64.71 5.8

mentioned earlier, pixel-wise distillation works better on the
last layer because it is closer to probability scores and may
be a better candidate for pixel-wise distillation. For pair-wise
distillation, the intermediate layer has a better performance
than the last layer. The results in table III validate these claims.
The training time of each method in table III also shows the
simplicity of both distillation methods. As can be seen, the
training time for the last layers is more than intermediate
layers. This is because the feature map size of the intermediate
layers(output of the encoder) is less than the last layers(output
of the decoder). For this reason, using the GAM matrix for the
last layers will reduce the training time. In the end, extensive
experiments show that using pixel-wise distillation on the last
layers and pair-wise distillation on the intermediate layers will
lead to a good balance between accuracy and training time.

TABLE II
AVERAGE AND STANDARD DEVIATION OF MIOU METRIC OF 3

RUNS WITH DIFFERENT RANDOM SEEDS AND THEIR
TRAINING TIME FOR DIFFERENT TRAINING METHODS ON

THE VALIDATION SET OF PASCAL VOC 2012.

Network Avg. of mIoU Std. of mIoU Time(msecond)
Teacher 74.48 0.44 760

No Distillation 66.59 0.29 250
GAT [37] 67.11 0.28 450

Method of [34] 68.53 0.25 560
Proposed method 69.21 0.63 740

TABLE III
COMPARISON OF THE RESULTS AND TRAINING TIME OF EACH

DISTILLATION METHOD WITH DIFFERENT POSITIONS OF
FEATURE MAPS. THE MIDDLE AND END REFER TO THE LAST

CONVOLUTION LAYER OF THE DECODER AND THE LAST
CONVOLUTION LAYER BEFORE THE PROBABILITY SCORES OF
THE DEEPPLAB-V3+, RESPECTIVELY. RESULTS ARE AVERAGE

OF 3 RUNS ON THE PASCALVOC 2012 VALIDATION SET.

Distillation method Avg. of mIoU Time(msecond)
Pixel-wise(MIDDLE) 68.46 700

pixel-wise(END) 69.04 720
pair-wise(MIDDLE) 68.47 680

pair-wise(END) 68.54 760

Fig. 2. Comparison of segmentation results between ground-truth, teacher
prediction, student prediction and prediction after distillation.

V. CONCLUSION AND FUTURE WORK

In this work, two methods for distilling knowledge from a
cumbersome network to a compact model was introduced by
considering the pixel-wise and pair-wise similarity between
the two networks. Experiments showed that it can successfully
boost the student network’s performance. Higher levels of deep
networks contain more abstract information. In an extreme
example, the normalized prediction layer is trained to have
a pure information about the structure of the problem and
forget as much as possible about the details of instances of



the objects. Even two identical network architectures might
find two different local optimums in their training stages, and
the chance of having distant representations for each input
decrease as the depth of layer of representation increase.
This fact has attracted researchers to invent methods that can
distill information from deeper and near last feature maps of
two networks. The proposed method solved this problem by
taking the intermediate feature maps and transforming them
into similarity matrixes and using the last layers to create
meaningful representations that wash out restrictive details for
distillation and hold helpful information that can guide the
student in the optimization space. In the future, the community
may want to pay more attention to use the information in
channels to create more meaningful feature maps to invent
more novel distillation functions. Several works exploiting
channel-wise information have been proposed but suffer from
expensive computation for distilling channel-wise information.
In this work, simple and efficient methods were employed, but
exploiting the information in the feature maps channels may
have good potential for knowledge distillation.
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