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ABSTRACT

Despite recent advances in text-to-image (T2I) models,
they often fail to faithfully render all elements of complex
prompts, frequently omitting or misrepresenting specific ob-
jects and attributes. Test-time optimization has emerged as
a promising approach to address this limitation by refining
generation without the need for retraining. In this paper,
we propose a fine-grained test-time optimization frame-
work that enhances compositional faithfulness in T2I gen-
eration. Unlike most of prior approaches that rely solely
on a global image–text similarity score, our method decom-
poses the input prompt into semantic concepts and eval-
uates alignment at both the global and concept levels. A
fine-grained variant of CLIP is used to compute concept-
level correspondence, producing detailed feedback on miss-
ing or inaccurate concepts. This feedback is fed into an
iterative prompt refinement loop, enabling the large lan-
guage model to propose improved prompts. Experiments
on DrawBench and CompBench prompts demonstrate that
our method significantly improves concept coverage and
human-judged faithfulness over both standard test-time op-
timization and the base T2I model. Code is available at:
https://github.com/AmirMansurian/NoConceptLeftBehind

Index Terms— Text-to-Image Generation, Test-time Op-
timization, Compositionality

1. INTRODUCTION

Text-to-image (T2I) generation has seen rapid progress with
models such as DALL·E [1], Stable Diffusion [2], and
FLUX [3, 4], which can synthesize realistic images from
natural language descriptions. Despite impressive zero-shot
capabilities, these models often struggle with compositional
faithfulness: faithfully representing all objects, attributes, and
relations described in the prompt [5, 6].

A promising direction to mitigate such failures is test-time
optimization. Instead of retraining large models, one can re-
fine the input prompt or generation process iteratively, guided
by a scoring function. Recent frameworks demonstrate that
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Fig. 1. Overall diagram of the proposed framework. Input
prompt is first processed by the Concept Extractor module,
which extracts key concepts from the initial prompt. Then, in
each step, the Generator module uses an LLM to rewrite di-
verse prompts based on both overall and concept-level scores,
and a T2I model generates candidate images. The Scorer
module evaluates these candidates using a fine-grained vari-
ant of CLIP, and the scores are fed back to the generator. Af-
ter a certain number of iterations, the final image is produced.
Concept-level scores help the LLM address missing concepts
from previous steps and rewrite improved prompts.

large language models (LLMs) can be used at inference time
to generate and refine candidate prompts, while an external
scorer evaluates image–text alignment [7, 8, 9, 10]. This loop
can progressively improve results without additional training
data. One such framework is MILS [10] (Multimodal Iterative
LLM Solver), which leverages an LLM to propose prompts
and a global CLIP-based [11] scorer to evaluate generated
images. While MILS demonstrates the potential of test-time
iterative optimization, it is limited by its reliance on a single,
coarse similarity score. A global CLIP similarity may assign
a high score even if some prompt concepts are missing, since
it measures overall match rather than concept-level fidelity.

Contributions. We propose a fine-grained test-time op-
timization framework for text-to-image generation that im-
proves compositional fidelity (Figure 1). Our approach ex-
tends iterative prompt refinement by introducing concept ex-
traction and a fine-grained CLIP scorer that evaluates both



global prompt–image alignment and per-concept correspon-
dence. By feeding these detailed scores back to the LLM,
the system is guided to explicitly recover missing objects,
attributes, and relations, resulting in images that more faith-
fully capture all aspects of the input prompt while maintaining
overall semantic alignment.

2. RELATED WORK

T2I generation has rapidly advanced from early GAN-based
approaches to transformer-based and diffusion models that
achieve striking visual quality [12, 13, 1, 14, 2]. Recent large-
scale diffusion models, including DALL·E 2 [1], Stable Dif-
fusion [2], and FLUX [3] demonstrate impressive zero-shot
generation capabilities across diverse prompts. Despite these
advances, even state-of-the-art models remain prone to com-
positional errors, often omitting or misrepresenting specific
objects, attributes, or spatial relations when prompts become
complex or multi-object in nature.

One promising direction for addressing this challenge is
test-time optimization, which adapts or refines model behav-
ior during inference without additional training, often improv-
ing robustness and alignment with task-specific requirements.
Several recent studies have demonstrated that prompt opti-
mization at test time can significantly enhance performance.
For instance, [7] iteratively rewrites prompts by obtaining
feedback from a visual question answering model, another
variant refines prompts using a multimodal large language
model [9], and MILS [10] introduces an iterative framework
driven by CLIP-based feedback. To reduce the inference-
time burden of such methods, [8] also proposes a fast, single-
iteration prompt alignment.

3. METHOD

3.1. Overview

Given an input prompt P , we first extract its key semantic
concepts (e.g., objects, attributes, relations), and then evalu-
ate generated images with both a global similarity score and
per-concept scores computed via a fine-grained CLIP model.
This feedback is used in an iterative loop to refine candidate
prompts proposed by an LLM, leading to images that more
faithfully capture all prompt elements. Figure 1 illustrates the
overall diagram of the proposed method.

3.2. Concept Extraction

Let P be the input prompt, decomposed into a set of k con-
cepts: C(P ) = {c1, c2, . . . , ck}. Concepts include objects,
attributes, and relations. We obtain C(P ) using a syntactic
parser or an LLM-based semantic extractor.

3.3. Fine-Grained Scoring

Given the input prompt P and the generated image I from the
T2I model, we compute two types of similarity scores:

Sglobal(I, P ) = CLIP(I, P ), (1)
si(I, ci) = CLIP(I, ci), i = 1, . . . , k, (2)

where CLIP(·, ·) denotes cosine similarity in the joint embed-
ding space of a fine-grained CLIP variant. The global score
measures alignment with the entire prompt, while si evaluates
the presence of each concept individually.

3.4. Optimization Formulation

The standard MILS [10] framework optimizes only the global
score:

max
I

Sglobal(I, P ). (3)

In contrast, we formulate the problem as a multi-objective op-
timization:

max
I

Sglobal(I, P ) +
1

k

k∑
i=1

si(I, ci), (4)

where this objective explicitly encourages generated images
to satisfy all extracted concepts.

3.5. Iterative Refinement

At each iteration, the LLM proposes a batch of candidate
prompts. For each candidate P̃ , images are generated and
scored using the above objective. The top-ranked candidates,
along with detailed per-concept scores, are fed back into the
LLM to guide subsequent generations. This loop continues
until convergence or a fixed number of iterations.

3.6. Signal Processing Viewpoint

Our method can be interpreted through the lens of signal pro-
cessing. The prompt P is analogous to a composite signal
with semantic “frequency components” {ci}. A global sim-
ilarity score reflects total signal energy, which may remain
high even if some bands are missing. By projecting the gen-
erated image I onto each concept ci via si(I, ci), we perform
a filter-bank–like decomposition. Iteratively refining prompts
with these projections resembles adaptive equalization, ensur-
ing all components are preserved. This perspective grounds
our method: it enforces both global alignment and the faith-
ful preservation of individual concepts, akin to maintaining
overall energy and spectral detail in classical signal recon-
struction.



Table 1. Quantitative results comparison on T2I CompBench and DrawBench prompts.

Method T2I CompBench DrawBench

VQA CLIP (L) Captioning (L) GPT4-o VQA CLIP (L) Captioning (L) GPT4-o

FLUX 0.865 0.272 0.687 0.717 0.620 0.279 0.645 0.719
MILS 0.925 0.287 0.694 0.744 0.665 0.299 0.671 0.765
Our 0.955 0.295 0.701 0.810 0.715 0.304 0.677 0.827

Fig. 2. Win rate comparison judged by human evaluation.

4. EXPERIMENTS

4.1. Datasets and Evaluation Metrics

We evaluate our method using two widely adopted bench-
marks. First, DrawBench [14], a set of 200 prompts designed
to test text-image alignment, across 11 categories. Second, a
curated subset of T2I-CompBench [15], where we select 200
prompts distributed across 8 compositional categories.

For evaluation, we employ both human and automated
metrics. Human evaluation follows a win-rate protocol
against the baseline under clear guidelines to reduce subjec-
tivity, with three evaluators whose judgments are aggregated
by majority vote. Automated evaluation consists of several
complementary metrics: Visual Question Answering (VQA)
using BLIP [16], CLIP Score [17] measuring text–image sim-
ilarity in the CLIP embedding space, and Captioning Score,
which computes the similarity between the BLIP-generated
caption and the original prompt in the CLIP text embedding
space. We further introduce a GPT Score, where GPT-4o
rates alignment between prompt and image on a [0, 1] scale,
using category-specific prompts (e.g., attributes, spatial rela-
tions, numeracy) to capture different types of compositional
alignment.

4.2. Implementation Details

We extend the MILS [10] codebase by integrating several key
components. As the scorer, we employ FG-CLIP [18], a fine-
grained variant of CLIP trained for region-to-word alignment.

For text-to-image generation, we adopt FLUX.1 [schnell] [3],
and for re-writing prompts and extracting concepts from the
input, we utilize LLaMA-3.1-8B-Instruct [19].

During optimization, 50 new prompts are generated at
each iteration, while the top 20 prompts from the previous
step are retained. The process runs for a total of 10 iterations.

4.3. Quantitative and Qualitative Results

Table 1 presents the evaluation metrics for the base gener-
ator method (FLUX), the MILS baseline, and our proposed
method on two datasets. As shown in the table, our method
consistently outperforms the baselines across all metrics,
demonstrating the effectiveness of incorporating fine-grained
views to enhance compositional faithfulness in T2I genera-
tion. In particular, our method yields significant improve-
ments over the FLUX baseline and achieves a clear margin
of superiority over the MILS framework across nearly all
metrics.

Furthermore, Figure 2 illustrates the win rate of our
method compared with FLUX and MILS in terms of both
image quality and text faithfulness. The results confirm that
images generated by our method are more frequently pre-
ferred in human evaluations.

In addition, Figure 3 provides a qualitative comparison
between our method and the baselines. It can be observed
that the proposed method enhances the quality of generated
images across various categories, including counting, spatial
relationships, text rendering, and conflicting prompts.

4.4. Ablation Study

Figure 4 presents the results of our method across differ-
ent iterations and evaluation metrics on both datasets. It
can be observed that even in the first iteration, our method
achieves strong performance compared to the FLUX base-
line and almost consistently outperforms MILS at every
iteration. As noted earlier, test-time optimization methods
typically introduce additional computational overhead; how-
ever, our method surpasses the baselines even at the first step.
This flexibility allows practitioners to obtain strong results
with minimal overhead, while further improvements can be
achieved by increasing the number of iterations if additional
computation is acceptable.
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Fig. 3. Qualitative comparison with FLUX and MILS baselines on sample prompts from DrawBench and CompBench across
different categories.
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Fig. 4. Per-step comparison of our method with Flux and
MILS baselines across two metrics on the DrawBench and
CompBench prompts.

In addition, Figure 5 presents an ablation study of our
method’s performance across different prompt categories in
comparison to the FLUX and MILS baselines. The results
show that our method achieves performance that is consis-
tently better than or on par with MILS across all categories.
Notably, it performs marginally better in challenging cat-
egories such as counting, spatial relationships, and color
prompts, which is consistent with the qualitative comparisons
presented earlier in Figure 3. Thanks to the fine-grained view
of our method, compositional improvements are achieved
throughout the process, leading to marginally better results in
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Fig. 5. Comparison of GPT4-o scores for the proposed
method against FLUX and MILS baselines across different
prompt categories on DrawBench and CompBench.

certain categories.

5. CONCLUSION

We presented a fine-grained test-time optimization method
for text-to-image generation. By decomposing prompts into
concepts and scoring them with a fine-grained CLIP model,
our approach supplies detailed feedback to an iterative refine-
ment loop. This yields images that more faithfully capture
all aspects of the input prompt, outperforming both MILS
and raw T2I generation baselines. Our method highlights the
promise of concept-aware test-time optimization for improv-
ing the compositionality of generative models.
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